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Abstract-Radiation-convection interaction for a laterally bounded flow past a heated plate is investigated, 
whereby the influence of two-dimensional radiation is emphasized. Due to the high anisotropy of the 
radiation near the leading edge of the plate the ordinary, two-dimensional differential approximation 
fails in the vicinity of the edge. Therefore Olfe’s modified differential approximation, which separately 
accounts for the external wall radiation, is employed. The equations for a gray gas are linearized under 
the assumption of small temperature perturbations and are solved by means of the Wiener-Hopf 
technique. The results are compared with several approximate solutions. Among other results it is 
shown that the one-dimensional “radiation-layer” model of Cess is limited to weak radiation. For 

intermediate and strong radiation a distinct precursor is observed. 

NOMENCLATURE 

A, &J/Q-& 
&g(O) 

$1)’ 
coefficient defined by (D.2); 

“.,’ coefficient defined by (D.5); 

a, total hemispherical absorptivity for a gray 
surface; 

@‘> coefficient defined by (A.9); 

@?> coefficient defined by (D.6); 

Bo, Boltzmann number, 

Bo = p*,c;, U,*/(U*T:~); 
Bu, Bouguer number, Bu = c$h*; 

Cl, G, 
C3, C,, constants of integration; 

tii’, W$, coefficients defined by (28); 
c* 

&), 

specific heat at constant pressure; 
function defined by (24); 

G&l! 9” coefficients defined by (29): n,,r ” 1 _ ,. 
exponential integral function of order n; 
function defined by (26); 
semi-width of channel; 
nondimensional, frequency-integrated 
perturbation intensity, 

imaginary part of a (complex) function; 
unit on imaginary axis; 
kernel function defined by (15); 
nth repeated integral of the modified 
Bessel function K,,(z), defined in 
Appendix C; 

*Present address: DFVLR/AVA-Abt. Theoret. Gas- 
dynamik, D-34 Gattingen, Bunsenstr. 10, Germany. 

unit vector in ray direction; 
coefficient defined by (21~); 

function defined by (9); 
coefficient defined by (D.4); 

heat-source term defined in Appendix C; 
dimensionless net radiative heat flux, 

qR = q*R/{4c*T,*3(Tp*- T,*)}; 
real part of a (complex) function; 
coefficient defined by (D.3); 

propagation direction of I* ; 
absolute temperature; 
coefficient defined by (20a, b); 

free stream velocity parallel to plate; 
functions defined by (13a, b); 

nondimensional coordinates parallel and 
perpendicular to plate respectively, 
x = x*/h*, y = y*/h*. 

Superscripts 

* dimensional quantity; 
Fourier transformed quantity; 
modified zeros and poles as defined in 

Appendix B; 
. 

value according to one-dimensional 
model. 

Subscripts 

p, value on the plate; 

a, free stream value; 
ext, quantity due to external wall radiation; 

9, quantity due to gas emission; 

K value on the side walls; 

07 0, functions of i regular in an upper and 
lower half plane respectively. 

91.5 
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Greek symbols 

volumetric absorption coefficient; 
imaginary parts of the poles of K 
m-plane as defined in Appendix B: 

in the 

dimensionless radiation-convection par- 
ameter, r = 16 Bu/{ 3 Bo( 1+ Bd)j ; 
imaginary parts of the zeros of K in the 
m-plane as defined in Appendix B; 

Laplace operator; 
dummy variables of integration; 

dimensionless temperature. 

0 = (T*-T,*)/(T;-T,*); 
Fourier transformation variable; 

imaginary parts of the zeros of K as 

defined in Appendix B ; 
dimensionless axial coordinate, 

solid angle; 

density; 

Stefan-Boltzmann constant; 
imaginary parts of the poles of K as 
defined in Appendix B. 

INTRODUCTION 

THE TEMPERATURE field in a laminar flow past a flat 

plate at zero incidence is governed by the energy 

equation together with the conservation equations of 
mass and momentum. For a radiation absorbing and 

emitting medium, especially at higher temperatures, 

radiation phenomena become important and the 
equations of motion have to be modified to include 

electromagnetic radiation. While for vehicles flying at 
extreme velocities the cold-wall case with dissipative 
and shock heating is the one of interest, attention is 
focused in the present paper on investigating the 

radiative transfer induced by an isothermal hot plate. 
Such a problem has also possible application in the 
related fields of radiative heat transfer to a medium 

with suspended solid particles or in neutron transport 
theory. 

For most engineering purposes the radiant energy 
density and the radiation stresses are negligible so that 
only the radiant heat-flux term in the energy equation 
provides a coupling with the radiation field. This 
results in a set of non-linear integro-differential 
equations and the difficulty of solving these for the 
title problem forces us to make drastic simplifications. 
First we limit ourselves to flows at high Reynolds 
and PC&t numbers. an assumption basic to most 
apphcations with convective-conductive heat transfer 
only. Then in many situations involving radiating 
media dissipative effects will still be confined to a 

relatively thin boundary layer near the plate and a 
singular perturbation technique similar to higher order 

boundary-layer theory can be used to find a solution.* 
Such a “weak interaction” model has been advanced 

successfully by Cess (see for example [2]), although 

he as well as most other investigators neglect the 
change of radiation in the direction parallel to the 
plate, thus defining a “radiation layer” outside the 
dissipative boundary layer. But compared to the effects 

of viscosity and heat-conduction radiation is in general 
a long-range phenomenon so that two-dimensional 
effects and hence precursor heating of the medium 

may be of importance in many physical situations. It 
is the objective of this investigation to elucidate this 
question. Therefore we are solving for what Cess calls 

the “outer region” where dissipative effects can be 
neglected, but we do keep the two-dimensional char- 
acter of the radiation field. This way we find the first- 

order influence of convection upon radiation and 
vice-versa but are not concerned about radiation- 
conduction interaction which calls for a solution of 
the “inner region”. 

As noted by Vincenti and Traugott [3] such a two- 
dimensional treatment becomes manageable only with 
the help of linearization and the use of the differential 

approximation. But the differential approximation, 
being the lowest level in the spherical harmonics 
expansion, will be a good approximation only if the 
variation in the directional distribution of the intensity 

is sufficiently smooth. Unfortunately this is not the 

case for our problem where the intensity has a strongly 
non-isotropic character a few photon mean-free paths 

within the leading edge of the plate. Hence large errors 
of the ordinary differential approximation are to be 
expected there. 

Based on the assumption that the failure of the usual 
differential approximation is due to radiation from the 
walls Olfe [4] devised a conceptually very simple 

modified ditrerential approximation.$ We hasten to 
add that this modified differential approximation. al- 
though very simple in concept, may prove prohibi- 
tively difficult in an actual problem with more com- 
plicated boundaries. Morevoer, recent investigations 
[7.8,9], also aimed at improving the differential ap- 
proximation, indicate severe limitations of Olfe’S 
modification in the case of cold walls or interna heat 

*As in higher order boundary-layer theory the solution 
will not be uniformly valid far downstream. Mathematically 
second-order effects eventually become of first-order. i.e. in 
our case with growing boundary-layer thickness the 
boundary layer cannot be considered optically thin any 
more, thus leading to the solution of Viskanta and Grosh [l] 
for optically thick boundary layers. 

tSimilar modifications have been published by Landram 
and Greif [5] and Clickyman [6]. 
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generation. Nevertheless, this modified di~erential ap 
proximation seems to be applicable in the case of our 
problem and since good results were obtained for the 
one-dimensional test case published previously [lo], 
Olfe’s method will also be employed in the present 
investigation. Keeping in mind the fact that no exact 
solution of the two-dimensional problem exists, it is 
hoped that the results obtained by means of the 
modified differential approximation not only give a 
good qualitative picture but are also fairly good 
quantitatively. 

FORM~ATION OF THE PROBLEM 

While Olfe’s modification approximately takes care 
of the failure of the ordinary differential approximation 
near the leading edge in our problem we still have to 
face the spectral difficulty. The simplest but for most 
media rather unrealistic simplification is the assump- 
tion of a gray gas. For our exploratory purposes, where 
we try to find the basic influence of the radiation- 
convection parameter I, the notion of a gray gas with 
a volumetric absorption coefficient IX* is good enough 
as a first model but we shall return to this question 
briefly at the end of the paper. In addition to neglecting 
the frequency dependence we assume the medium to be 
non-scattering and of unit index of refraction, whereas 
all bounding walls are taken to be black for simplicity 
and also to display the maximum wall influence. For 
only small deviations from radiative equilibrium, i.e. 
(Tp” - T,*)/T,* cc 1, we may linearize and, omitting heat 
conduction and viscous effects, we obtain for the energy 
equation in terms of our non-dimensional quantities 
defined in the Nomenclature 

Bog+4divqR = 0. 

Here the Boltzmann number Bo gives the ratio of the 
free stream convective energy flux to the black-body 
radiative flux at free stream temperature. 

According to Olfe’s modified differential approxi- 
mation the net radiative flux @ at each point is split 
into two parts 

qR = 4s+ (lexr > (2) 

where qext is the flux contributed by the non-isotropic 
external wall radiation (to be computed in Appendix C), 
while qe is the flux contributed by gas emission. The 
latter can be adequately described by means of the 
differential approximation (see for example [l 1,121) 

div qs = 4 Bu(0 - I,), 

gradz = -aBuq,. 

(3) 

(4) 

Bu denotes the Bouguer number formed with a char- 
acteristic length h* to be introduced below. Equations 
(1) (3) and (4) can now be combined and in our case 
it is advantageous to formulate the problem in terms 
of the intensity &: 

The distribution of heat sources Q(x, hi) = 4 div qext 
introduced by the wall radiation is evaluated in 
Appendix C. For zero convection Bo = 0 and the above 
equation reduces to a Poisson equation. 

To complete the formulation of our boundary-value 
problem we have to prescribe the pertinent boundary 
conditions. The problem of most interest is the flow 
past a finite or semi-infinite hot plate in an otherwise 
unbounded stream. Since equation (5) is linear and 
admits a separation of variables solution the boundary- 
value problem could be solved by superposition such 
that the upstream and downstream solution match 
along the line x = 0 at the leading edge of the plate. 
At the same time the boundary condition on the plate 
has to be satisfied. This is not an easy task. On the 
other hand this mixed boundary-value problem is a 
typical example for the application of the Wiener- 
Hopf technique. But here the difficulty shows up in 
the factoring of a complex function with three branch 
cuts. This difficulty forced us to solve first a simpler 
problem where only poles but no branch cuts are 
involved, or in other words a problem whose solution 
can be expressed in terms of a Fourier series rather 
than a Fourier integral. There are several ways of 
accomplishing this. We have chosen the problem de- 
picted in Fig. 1 where a semi-infinite opaque plate of 
temperature 7” is located symmetrically between two 
parallel walls of free-stream temperature T,* < Tp* and 
moving with U,*. This laterally bounded problem also 
allows us to study the precursor effect and furthermore 
has the advantage that far downstream it’s solution 
approaches the well-documented one-dimensional case 
of radiative transfer in an emitting-absorbing medium 

FIG. 1. Geometry of the problem. 
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between two walls. The disadvantage is that by intro- 
ducing the channel half-width h* as a definite geo- 
metrical length an additional parameter, namely Bu, 
has to be accounted for. 

Due to the symmetry of the problem we only need 

to solve for y 2 0. Since the net flux qs in y-direction 

is zero along J = 0, x < 0, equation (4) gives us the 
condition 

$(x, 0) = 0 for x < 0. (6) 

The boundary condition for I9 on the remaining 

boundary can be determined within the framework of 
the differential approximation and is written in the 

form (see for example [12]) 

;+ (x, 1) + A,Bul,(x, 1) = 0, 

and for x > 0 

(7) 

(84 
(W 

The constant A is defined in the Nomenclature and, 

for our assumed black-body walls, takes the value 

Aw = AP = A = 312. 

The inhomogeneous boundary condition (8a) is rel- 
evant for the ordinary differential approximation. In 

Olfe’s modified differential approximation the radi- 
ation from the plate is taken care of by qekxt and hence 

the homogeneous boundary condition (8b) applies in 

We proceed now by first solving the problem by 

this case. 

means of the much simpler ordinary differential ap- 
proximation. Not only are large portions of the analysis 
common to both methods but it is also quite instructive 
to compare the two results, 

SOLUTION ACCORDING TO THE ORDINARY 

DIFFERENTIAL APPROXIMATION 

As mentioned before the above formulated problem 
is a typical example of the application of the Wiener- 
Hopf technique in conjunction with the two-sided 
Fourier transform defined by 

I 
31 .f@) = e-“‘f(x)dx, 

% 

with the inverse transformation 

Thus taking the Fourier transform of the homogeneous 
equation (5) with respect to x we find 

d2f 
-LJ-n.i~~ =O 
dy2 g ’ 

m(n) = {~(12+3Bt12--Ui6~u/~o)/ 

(i-i16Ba/Bo)}“’ (9) 

with the general solution 

i&y; 1) = C1(l)emY+Cz(i)e-“Y. (10) 

Similarly, after taking the Fourier transform, we can 
write the boundary conditions (6) (7) and (8a) in 

the form 

2 
f,(O; a) = u(n), -i/i + ~- G(L), 

3Bu 
(12) 

Here U, and Go are the Fourier transforms of the 
functions 

u(x) = 
{ 

JJk O), x < 0 

0. x<o (134 

0, x<o 
u(x) = 21, 

F (x. 0+1, x > 0 
(13b) 

which are unknown on complementary semi-infinite 
lines. ii, and i& are regular functions of i in an upper 

and lower halfplane denoted by the subscript @ and 0 

Now, using (11) (12) and the Fourier transformed 

respectively. The a priori assumption that these half 

definition (13b), we express the constants C1 and C, 
of the general solution (10) in terms of ii, and tis and 
end up with the governing Wiener-Hopf equation 

planes overlap is standard but has to be checked once 
the result has been found. 

ii(l), - $*),/K(L) = i/j_, (14) 

which is valid in the strip of regularity -pi < [mi < 0. 

In writing -i/l in (12) as the Fourier transform of 
Heaviside’s unit function we have already assumed 
ImA < 0 while the asymptotic behavior J4 v exp(h,x) 
for x + -co gives the lower limit of the upper half 
plane. Also it is easy to prove that 

is a single-valued function of i. Besides the point at 
infinity, both numerator and denominator of K have 
another accumulation point of simple zeros at 
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FIG. 2. Two-dimensional solution for the non-dimensional linearized radiative heat 
flux normal to the black-body plate as a function of c and r for Bu = 1. 
(a) Solution according to the ordinary differential approximation. (b) Solution 
according to Olfe’s modified differential approximation with one-dimensional (solid 

lines) and two-dimensional (marked points) external wall radiation. 

1 = il6Bu/Bo. Nevertheless Weierstrass’ infinite-pro- 
duct theorem can still be applied to factor K into 

two regular and zeroless functions of algebraic growth 
as 1+ co in the appropriate half plane, i.e. 

where 

K = K,K, (16) 

Here we introduced, instead of Bo, the dimensionless 
radiation-convection parameter 

1-= 16Bu/{3Bo(l+B~~)} 

which measures the ratio of radiative to convective 
energy transport (compare [12], p. 103). The explicit 
values of the zeros - &, ivy) and poles - iok, i$, 

j= 1,2; k= 1,2 ,..., are given in Appendix B. The 
Wiener-Hopf equation (14) is now solved in the usual 

manner (cf. Noble [13]). Separation into two parts 
regular in an upper and lower half plane respectively 
defines an integral function of 1 which is taken to be 

identically zero to yield the least singular solution. Thus 

ii& = i 
3 Bu/2 

2+3 Bu/2 
K(%/& (18) 

1+ 
3 Bu/2 

2$3 Bu/2 I 1 WI, . 
Taking into account equation (4) the inversion of (18) 
by means of the residue theorem* gives at once the 

*The inversion contour has to be deformed such that 
the accumulation points of poles at infinity and at 
I = il6Bu/Bo are circumvened properly. 



920 WERNER KOCH 

IA I I I 

0 “O-01 
I 

(a) 
0-I c I.0 IO 

Solution according to 
one-dimensional modet 

0.96 

% 
OS94 

0.90 
I i 

0 yo.01 
(b) 

0-l I-0 I 
6 

FIG. 3. Two-dimensional solution for the non-dimensional linearized radiative heat 
flux normal to the black-body plate as a function of 5 and r for Bu = 0.1. 
(a) Solution according to the ordinary differential approximation. (b) Solution 
according to Olfe’s modified differential approximation with one-dimeRsiona1 (solid 

lines) and two-dimensional (marked points) external wall radiation. 

heat flux normal to the plate. In terms of the “radiation- 
layer” variable t, introduced by Cess [2], we obtain 
for < 2 0 

q;(r> O+) = 1 
1+3Bu/4 

x l- i 5 T,,jexp(-$)<) , (19) 
j=in=l 

Numerical results for the radiative heat flux q: normal 
to the plate are shown in Figs. 2a and 3a for Bu = 1 
and Bu = 0.1 respectively as well as for several values 
of T. Since in our problem the radiative heat flux 
cannot be larger than for a fully transparent gas the 
results are clearly erroneous near the leading edge due 
to the failure of the ordinary differential approximation. 

In particular the heat flux is too high there, a 
tendency that, although less pronounced, already shows 
up in the one-dimensional solution (compare Fig. 5). 
For comparison the result according to this one- 
dimensional “radiation layer” model is indicated by the 
dotted curve. 

The general solution (10) for J, in the complex plane 
with C1 and C2 expressed in terms of i& and ii@ is 
given by 

m cosh[m( 1 - y)] + (3 B42) sinh[m( 1 - y)] 
I(y; A), = - 

m cash m + (3 Bu/2) sinh m 
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Once 4 is determined, the temperature 0 in the com- 
plex plane can be evaluated in terms of 1, by combining 
the transformed equations (1) and (3), namely 

Inversion of 2 and @ by means of the residue theorem 
then gives the final results in Fourier-series form. For 

5 < 0 and 0 < y < 1 we obtain 

x exp(L7,5)cosh,y), @la, b) 

(214 

Similarly, for 5 3 0 and 0 < 4’ < 1 

Here jr, and Bnr as defined in Appendix B, are the 
absolute values of the imaginary zeros and poles of K 

in the m-plane respectively. It can be checked im- 
mediately that for l-+ a both the two-dimensional 

results (19) and (21) as well as the one-dimensional 

results (A.7) and (A.8) approach the well-studied solu- 
tion for a radiatively participating medium between 

two infinite walls according to the differential approxi- 
mation. Numerical results for the gas temperature 0 

at y = 0 are shown in Fig. 4(a) for the specific case 
Bu = 1. The indicated asymptotic results at 5 = 0 are 
obtained in the usual fashion by letting L + ~j in the 

(7) and (8b). The standard procedure (see [13], p. 87) 
employs the method of superposition, but we may 
also perform the additive decomposition directly.* We 

take the Fourier transform of (5) noting that the ap- 

propriate domain in the i-plane will again be a strip 
below the real axis since Q(x, y) behaves exponentially 

for x -+ - cc and approaches a constant as x + + co. 
Thus we find 

dZi 
-!-&f = 

3 Bu2 

dy2 ’ iBo i-il;Bu,Bo ‘(“‘) 

with the general solution 

icy; I), = C3(k)emy+ C&)e-my+ igpar,. (23) 

A particular solution igpart is easily found by the method 

of variation of parameters 

igpart (Y; A) = 3 E ___-_-_L_ 
2 ~Bo m(A - 116 Bzr/Bo) 

i s 

Y 
x emy e-“‘“Q(~;L)d~-e-“Y Ye”n~(~;i)d~ . 

0 I 0 I 

Now the procedure is equivalent to the one outlined 
in the previous section only, due to the homogeneous 

boundary condition (8b), the term i/A has to be omitted 
in (12). Elimination of the constants of integration 
C3 and C, in terms of ii, and i& by means of the 
Fourier transformed boundary conditions yields the 

Wiener-Hopf equation 

ii(L), - v(i.)&K@) = D(i)/K& 

valid in a strip below the real axis. Contrary to 

equation (14) the inhomogeneous term in the above 
Wiener-Hopf equation originates from the inhomo- 
geneous term in the governing equation (5) and not 
from the boundary condition. We have 

iK, 3 Bu2/Bo 
D(L) = ; J ‘1 o 

cosh[m(l-q)] +gsinh[m(l-q)] Q(q;i)dq 

1. - i 16 Bu/Bo 3Bu 
(24) 

-coshm+msinhm 
2 

With the multiplicative factoring of K given by (16) 

appropriate complex half plane before inverting. Due and (17) we need to decompose D(A) additively into 

to the failure of the ordinary differential approximation two parts regular in an upper and lower half plane. 

near the lead&g edge these results are expected to be We write formally 

in error for small 5. 
DU) = D(n), + D(A), 

SOLUTION ACCORDING TO OLFE’S MODIFIED 

DIFFERENTIAL APPROXIMATION 
and refer to Appendix D for the explicit decomposition. 

~__ 

As before the Wiener-Hopf technique may be used 
*Equivalently we could also apply the Green’s function 

in solving the now inhomogeneous equation (5) to- 
method for a non self-adjoint boundary-value problem (see 
for example [14]). But the evaluation of Green’s function 

gether with the homogeneous boundary conditions (6), in our particular case also leads to a Wiener-Hopf problem. 
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0.6 

Solution for laterally 

unbounded problem [IO] 

FIG. 5. One-dimensional solution for the non-dimensional linearized radiative 
heat flux normal to the black-body plate as a function of 5 and Bu according 

to the ordinary differential approximation. 

Then separating the functions, regular in an upper 
and lower half plane, and again setting zero the integral 
function we obtain 

i@), = D(%/K@), 

fi(& = -D(IJ,K(A) @. (25) 

With C3 and C, of (23) expressed in terms of ii, and 
ij, we find our general solution 1, by inverting 

i(y. a) 

’ B 

= mcosh[m(l -Y)I + (3BuP)sinh[mU -Y)] 
m cash m + (3 Bu/2) sinh m 

x ii, + & I, + G - exp(my)G + &ran, 

where we introduced the abbreviation 

x {(3Bu/2)coshm+msinhm}D(~)/K(I)~. (26) 

Once again 0 can be expressed in terms of & by 
combining the Fourier transformed equations (1) (2) 

and (3) together with the definition (C.l) such that 

o(y;n) = - 
il6BuJBo 

I-il6Bu/Bo 
h; A), 

+L c?(y;J.) 
Bo A--i16Bu/Bo’ 

(27) 

In principle all quantities can now be evaluated at 

any point but for simplicity we concentrate on com- 

puting the gas temperature and the heat flux normal 
to the plate, both at y = 0. For the latter we basically 
need the inversion of (25) while 0(x, 0) can be obtained 

by setting y = 0 in (27) and inverting. The inversion 
integrals are evaluated by means of the residue theorem 
resulting in a rather lengthy series representation. 
For 5 < 0 we obtain 

Similarly for 5 > 0 

{ [l +Es(Bu) - 3E,(Bu)/2]/(1+ 3Bu/4) 

[l + 3Bu/2 - E,(Bu) + 3E,(Bu)/2]/(2 + 3Bu/2) 
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The coefficients w,, and 2” are defined by 

V(j’)l” = 1,;” cos(l;,n) [<‘;y’zBU) Q’(<, V) 

x exp{k([ t- 2Bu</Bo)} d< dn, (28a) 

x exp( -$‘(~BuJLIo+<)) djdn. (28b) 

s 1 

9(#) = 
‘I= 0 

x Q’(<. g)exp( -$r(<-2BujiBo)j d<da, (29a) 

Formulas as the ones listed above only make sense if 
general conclusions can be drawn from them and 

numerical results are given. First we note that, if only 

&Lo) and &$‘r are kept while the remaining coefficients 
LX!~. _%$,,, %?,,, and s,,, are all set identically zero, we 
have the solution for the two-dimensional equations 
but for a one-dimensional discontinuous heat-source 

distribution. Since .&Lo) and &j’ can be integrated 
explicitly the corresponding results for qR and 0 are 

obtained comparatively easily and are depicted in 
Figs. 2b and 4b for Bu = 1 and in Fig. 3b for Bu = 0.1. 
The results according to the exact two-dimensional 

source distribution at several points are indicated by 
triangles, circles and crosses for I = 0.1. 1 and 10 
respectively. It is clear that the temperature distribution 

due to the discontinuous source function has to have 
a discontinuous slope at .Y = 0 while the continuous 

two-dimensional source function smoothens this kink. 

The numerical procedure for obtaining the latter 
results is rather cumbersome but it is quite surprising 
how well the solution according to the one-dimensional 
source distribution approximates the fully two-dimen- 
sional results. This fact might prove useful in more 
complicated problems where the two-dimensional 
source distribution cannot be evaluated explicitly. For 
comparison the solution found by using the one- 
dimensional “radiation-layer” model is also given and 
marked by the dotted curve. As can be seen quite large 
deviations occur due to the two-dimensional character 
of the radiation held unless I is very small. 

KEMARKS ABOUT NON-GRAY GAS RADIATION 

We conclude this section with a few remarks about 
the effects of non-gray gas radiation. An exact treat- 
ment is very difficult and differs for each medium but 
useful approximate results can be obtained by employ- 
ing some of the several models proposed in the 

literature. For a “gray-band” model the changes in the 
differential approximation are outlined in [ 151. Accord- 

ing to [4] IcXt would then represent the integral of the 
wall spectral intensity over the width of the gas 
absorption band while the radiation outside of this 

band would not effect the state of the gas. Similarly 
Traugott’s [16] modification of the differential approxi- 
mation can be used if the frequency variation of the 
absorption coefficient is smooth enough. In this case 

the linear Planck mean absorption coefficient c&, as 
defined by Cogley rt al. [ 171 has to be used for our 
linearized problem. In applying the ordinary differ- 
ential approximation (i.e. Q = 0) the governing equation 

(5) as well as the boundary conditions (6) (7) and @a) 
and hence the solution remains the same if we rcdehe 

Here xi, is the Rosseland mean free absorption co- 

efficient evaluated at free stream conditions. 
Accordingly Traugott’s and Olfe’s modification can 

be applied simultaneously. In this case we have to 

redefine 

Q = 4(cG, /G&, )I” div rlcXl 

and for the computation of qext again c& has to be 
used. But contrary to the analysis for qg where we 
have to account for fictitious gray walls defined by the 

new value for A given above. the real value of u has to 
be taken here. 

A word of caution should be added with regard to 

Traugott’s [ 161 modification if x,$, differs substantially 
from at,. In a recent Note [lg] Puri and Mandell 
solved for the flow of a plasma (with CZ(R*J$~ = l/l 936) 
past a flat plate by means of the one dimensional 
“radiation-layer” model. They found that the non-gray 
exponential-kernel method gives the correct limiting 

value for 5 + 0 but fails by a large amount for inter- 
mediate values of 5. Since there is a clear connection 
between the non-gray substitution-kernel method and 
Traugott’s modified differential approximation (see 
[19]) similar results are obtained with the latter even 
if the wall radiation is taken into account by Olfe’s 
modification. Therefore it appears that the non-gray 
differential approximation is not applicable if a:, and 
cQP, differ by orders of magnitude. 

While Olfe’s and Traugott’s modification approxi- 
mately take care of two serious failures of the differ- 
ential approximation a third complication is the onset 
of non-linearity if the temperature differences are not 
small any more. While such a non-linear treatment is 
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outside the scope of this investigation we refer to [20] difficult to cope with. Last but not least a method 

where the one-dimensional “radiation-layer” problem similar to Olfe’s might prove valuable in investigating 
is solved numerically showing a rather strong depen- the leading edge problem in a rarefied gas if the 
dence on Tp*/T,*. convective velocities are zero or small. 

CONCLUSION AND EXTENSION 

Although the more interesting laterally unbounded 
case had to be postponed due to the difficult factoring 
and decomposition in the Wiener-Hopf technique, the 
laterally bounded problem also gives a clear picture 
of the influence of convection upon the radiative heat 
transfer from a hot plate. 
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APPENDIX A 

Solution for the One-Dimensional Model 

In order to assess the effects of two-dimensional radiation 
we need for comparison the solution of the laterally bounded 
problem according to the one-dimensional model obtained 
by the same differential approximations. This solution can 
be found the same way as for the unbounded problem 
outlined in [lo]. To emphasize the common features we 
formulate the one-dimensional problem also in terms of I, 
and use the one-sided Fourier transformation instead of the 
more common Laplace transformation. 

Thus, assuming that changes in the transverse radiative 
transfer predominate over that in flow direction our basic 
equation (5) reduces to 

where now (see for example [4] and [lo]) 

&t(Y) = 2B3(Bu.y) 

and hence 

(A.2) 

Q(,3 = 4-- = -8BuEz(Bu.y). 
dq 

(A.3) 

In the one-dimensional problem disturbances are limited 
to the region x > 0 so that we also need to specify the 
“initial condition” 

&(O. v) = 0. (A.4) 

(a) Solution according to the ordinary differential approxi- 
mation 

With Q = 0 we take the one-sided Fourier transform, 
defined by 

ImA < 0. 

of the homogeneous equation (A.1) and the boundary 
conditions (7) and @a), with due consideration of (A.4). and 
solve the ordinary differential problem for &(J; A). 
Again we are mostly interested in the heat transfer and gas 
t;emperature on the plate. The latter can be found from 
I, by means of the transformed equations (1) and (3). Thus. 
in the complex plane 

(A.5) 

&O;l) = __‘6 
2 

3Bo$--16Bu/Bo) 

3Bu 
cash rit + ~.-; smh rfi 

2fi 

x 4 
icoSh$+~~[l+(~)2]- (A6) 

with 

n^z = BuJ3E/(> -i16Bu/Bo)“~2. , ” j , 
As for the two-dime_nsional problem we can easily show that 
both 4*y(O; A) and 6(0; h) are single-valued functions of 1. 
Instead of the finite branch cut in the laterally unbounded 
problem, discussed in [lo]. our functions now exhibit an 
infinite number of poles at 

l=fj and ,J.=if,, <k=e-- B: 
Bo 3Buz+fl:’ 

k = 1.2,.... 

with an accumulation point at 1. = ilbBu/Bo. Since the 
main part of the denominator of the above functions (A.5). 
(A.6) and of K(A), as given by (15) coincide in the m-plane, 
the/$‘s are those defined in Appendix B. Now the inversion 
of (A.5) and (A.6) by means of the residue theorem gives 
in terms of our “radiation-layer” variable 5 

Figure 5 shows t,.(c. 0) for several values of Bu. 

(b) Solution according to Olje’s modijied d$erential upproxi- 
mation 

Now we take the one-sided Fourier transform of the 
inhomogeneous equation (A. 1) as well as of the homogeneous 
boundary conditions (7) and (8b). A particular solution of 
the corresponding ordinary. inhomogeneous differential 
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0,6 

Q 
Solution for laterally 

-VP unbounded problem [IO] 

0.4 

FIG. 6. One-dimensional solution for the non-dimensional linearized radiative 
heat flux normal to the black-body plate as a function of 5 and Bu according 

to Olfe’s modified differential approximation. 

equation is easily found by the method of variation of 
parameters, so that for y = 0 

&(0;1) =4 
16 Bu/Bo 

3 I(L-il6Bu/Bo) 

cosh[A(l-q)]+$sinh[&(l-n)] E2(Buq)dn 

X 
I 

4 
A 

-cosh&+ 
3Bu 

T[l + {2&,(3B~)}~] ’ 

~(0; n) = j2 (16Bu’Bo)2 
3 I(A:---~~~Bu/Bo)~ 

cosh[W-q)] +zsinh[A(l-?)1 Ez(Buty)dq 

x 
4 

3BucoshA+ y [I + (2ti/(3Bu)J2] 

8 Bu/Bo 

-%(A-i16Bu/Bo)’ 

Observing that 4 = &+fext we obtain the final results by 
inversion of the above equations together with (A.2) 

at, o+) = & (1 +b(Bu) - 3&VW/2) 

+2Bu ,f ~‘exp[-88.25/(3Bu’+B.Z)] 
n=~ 1+3Bu[l+{2~,/(3B~)}~]/4 ’ 

1 I2 @,@(3 Bu2 +P.‘)exp[ -8pi[/(3 Bu’+p,f)] -- 
3Bu,cl 1+3Bu[1+{2~,/(3Bu)j2]/4 

@‘r can be evaluated explicitly by using relation 5.231 (2) 
on page 632 of [22] so that after integrating by parts once: 

=;(3/2-logBu)+ E,(Bu) 
” 

-p 
P.’ 

cosfi.+~sinP. &(Bu) 
28” 1 

+; Re[E,(Bu+i/&)+log(Bu+i/I,)] 
n 1 

- $ Im[&(Bu + i/?.) + log(Bu + i/?J] 
n 

The results for $(<,O) and 6(&O) according to . .- Olfe’s 
modified differential approximatron are shown m P‘igs. 6 
and 7 for several values of Bu. The laterally unbounded 
solution [lo] is approached as Bu becomes large, since 
then the influence of the side walls is small. The failure of 
the ordinary differential approximation near the leading 
edge of the plate shows up clearly but is less pronounced 
compared to the two-dimensional case. 

(A.9) 

APPENDIX B 

Zeros and Poles oJK(A) 

To compute the zeros and poles of K(1) it is of advantage 
to first locate the zeros and poles of K in the m-plane*. 
Both, numerator and denominator of K are even functions 
of m and hence their roots occur in pairs. Furthermore 

*The author is grateful to Dr. Anneliese Frohn for this 
suggestion, 
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Solution for laterally 
unbounded problem 101 

FIG. 7. One-dimensional solution for the non-dimensional gas temperature 
on the black-body plate as a function of 5 and Bu according to Olfe’s 

modified differential approximation. 

these roots are purely imaginary so that by means of the 
infi~te-product theorem 

K(m) = - z!tr/T_ fi 1 + (m’yd2 
2+3B142~=, l+(m//$)*’ 

(B.1) 

The roots m = +iy, and m = +iBk, k = 1,2, . , are only 
functions of BU and their numerical values can easily be 
computed for example by means of Newton’s method. For 
large k 

f 3Bui2 1 

, 

so that obviously no convergence factor is needed in (B.l). 
For the special case of zero convection, i.e. Bo = 0, the 
governing equation (5) reduces to Poisson’s equation and 
(9) simplifies to m = E;. Hence for radiative heat transfer 
without convection (B.1) is already the infinite product 
representation of K(t). 

If Bo # 0 and with m given by (9) we have to solve, for 
a given k, a complex algebraic equation of third degree in 
order to obtain the zeros and poles of K in the I-plane. In 
other words each y: or & k = 1,2,. . , generates three 
zeros or poles of K respectively. Drawing on the corre- 
sponding one-dimensional result given in Appendrx A and 
some experience gained in treating a related heat-conduction 
problem [23J we make the ad hoc assumption that all zeros 
and poles of K are purely imaginary. This simplifies our 
problem because now we only have to solve a real algebraic 
equation of third degree which can be done by standard 
methods. We introduce the abbreviations 

b@:) = 1 + 
Bu2 + p:/3 

l-2(1 + Bz?)i 

c@$)= - 
3 M/2 -s: 

k = I,&.... 

i+- 
I’(1 +Bu*)’ I 

Then by expressing all terms as positive squares we can 
show that 

h3(fi:) - c’(fi:) > 0, k = 1,2,. . , 

and hence all poles of K actually lie on the imaginary axis 
as has been assumed. Furthermore, for each k always one 
pole lies on the negative imaginary axis while the remaining 
two are positive imaginary. As k +co one of the latter 
(namely irk”‘) has an accumulation point at 1, = i16Bu/Bo 
and hence can be considered a modification of the pole 
$ of the one-dimensional problem treated in Appendix A. 
The other two, with accumulation points at infinity, are 
new and are the mathematical consequence of our two- 
dimensional treatment. Ifwe substitute ~2 for /3: in the above 
formulas, similar results can be proved for all zeros of K(1). 
Thus, with 

‘I!(@;) = arccos[-c(P$)/h3’2(p:)], k = 1,2,. , 

K(l) has poles at 

i = - iol, z - i2 z <*(Bag, r-1 

= i~~l+2[b(~~)J’~zcos[(Y(~~)+2~)/3]~, 

16Bu 
= i -~~ { I+ 2[b(~~)]“‘cos[(‘u(~:) + 4n),‘3Jj. 

330 

Au 

= is {1+2[b(a:)]““cos[Y(s:1;31), 

k=1,2,.... 
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Correspondingly we find K(;C) has zeros at 

I = -ipt = -i2g&(Bu,T) 

=i~(It2[b(y:)]cos[(Y(y~)+2n)i3]}, 

1, = ivk” z i2 BE $‘(Bu, r) 

= ~~~l+2[bcrt)lcos[(Y(y:i+4nlj.71j. 

A = i# E i2 z V’,2’(Bu, IJ 

= i ~~(i+Z~b(~:)Jcos[Y(r:)/3]j, 

k = 1,2,.... 

With these results the infinite product representation (16), 
(17) follows at once. Again no convergence factor is needed. 

APPENDIX C 
Evaluation of the External Heat-Source Distribution Q(x, y) 

To obtain the heat-source distribution Q(x,>>), which 
according to our defining equations (I), (2) and (5) equals 

Qk Y) = 4 div qext, (Cl) 

we need to compute the non-dimensional net flux qeri 
due to black-body radiation from a semi-infinite plate 
at temperature Tpt and two enclosing parallel wails at 
temperature T$ < &* (see Fig. 1). For this calculation 
the medium is assumed to only absorb but not to emit 
radiation. Hence, omitting the emission term, simple integra- 
tion of the equation of radiative transfer along the propa- 
gation direction s (with unit vector I) gives the perturbation 
quantity 

&(s, 1) = exp( -Bus). 

From this the non-dimensional net flux qext is computed 
by integrating the components of icxt over the solid angle 

1 

s 

4n 
qext = ; Uext(s, I) da. 

0 

FIG. 8. Geometry for the computation of qext. 

17. No. 8-I 

In analogy to the coordinate system employed by Olfe 
for the cylindrical problem [24] we use the one shown in 
Fig. 8 and find 

Changing variables according to 

z = {(x - x’)~ +y2} 1/Z sinh t, 

cp = arc tan((x’ - X)/Y] 

qext can be expressed in the form 

q(x. Yfext = 2 
s 

x12 

n ip = -arct.wx/y) 

X Ki,(BuY/cos cp)dq. (C.2) 

Here 

K&(z) s 
s 

m ew(--;hqsh_‘l dt, 
(C.3) 

0 

as defined in [25], is the n th repeated integral of the modified 
Bessel function K&z) and is a special case of the function 

= &,Jz) = s cash vt 
exp(-zcosht)---dt 

0 cash” t 

discussed for example in [26]. Now with (C.l) and (C.3) 
we immediately find from (C.2) 

J 
x/2 

Q(x. Y) = -F ~ = _arctan,xiv) &(BuY/cos cp)dp. (~4) 

The function KiZ(z) can be evaluated numerically by means 
of the recurrence relation (cf. [25]) using Chebyshev approxi- 
mations for 

s 

m 
Ki,(z) = K,(t) dt 

I 

as given for example in [27]. While the external source 
dist~bution in the cylindrical problem [24] only depends 
on the radius, we have a truely two-dimensional dependence 
in our case. To obtain an idea about the magnitude of 
Q(x, y) the source distribution is shown in Fig. 9 for two 
values of Bu [Q(x, Y) does not depend on r]. 

As x -+ a, the one-dimensional problem, discussed in 
Appendix A, is approached and by comparing the corre- 
sponding quantities for qcxt and Q(x, Y) we can derive the 
useful relations 

1 

s 

nl2 
- 
= (b== -*/2 

cos rp Ki&?uy/cos cp)dq = E,(Buy), 

1 

s 

xi2 
- 
n 

Ki2(Buy/cos cp)dq = E2(Buy). 
p= -n/2 

HMT Vol 



930 WERNER KOCH 

0 
Y 

0.5 I.0 0 
Y 

0.5 I.0 

Q Q 

8Bu 8Bu 

-0.5 -0.5 

Bu= I Et/ = 0.1 

FIG. 9. Two-dimensional source function due to plate emission for Bu = I 
and Bu = 0.1. 

APPENDIX D 

Additive Decomposition of D(L) 

For the additive decomposition of D(L) and in order to 
clearly demonstrate the influence of the two-dimensional 
source distribution it is advantageous to write 

Q(x, Y) = Q(Y) + Q’k Y) 

Here Q(y) is the source distribution (A.3) according to the 
one-dimensional model while Q’(x, y) denotes the two- 
dimensional correction. Using (C.4) it is easily checked that 
Q’(x, y) is an odd function of x with 

8Bu n’2 
Q’(x, Y) = - 

* s 
Ki,(Buy/cos cp)dq, x > 0. 

arctan(X 

Unfortunately, it appears to be impossible to obtain an 
explicit Fourier transform of Q’(x, y) in terms of known 
functions. So, making use of Q’(x, y) being an odd function 
of x, we help ourselves by writing 

+ [S om Q’(x,y)e-‘““dx 1 (D.1) 8 
Substituting this into (24) we get correspondingly D(I) as 
the sum of three parts, i.e. 

D(A) = b(A) - D(A)‘+ + D(I)‘-’ 

Now each of these three functions has to be decomposed 
into two parts, regular in an upper and lower half plane 
respectively. A straight forward application of the formal 
decomposition theorem (cf. [ 131, p. 13) gives, after a rather 
tedious evaluation of the integrals by means of the residue 
theorem, first for &I): 

6(n), = -~~{~Bu/~-E,(B~)+~E,(Bu)/~} 

+i- 24gBdr’ i f Nn.j-d? m 
j=l ,,,=, (vu- 16Bu/Bo)(l-iv”‘) nr 

K(0) is simply 

i-G&} 

from (17a), $@’ is evaluated in Appendix A, equation (A.9). 
while a similar integration gives 

1 
_,#X E m 

s 
cos(~,n)&(Bnn) drl = sin Y,,,&(B~)/Y~ 

0 

-+(Bu)cosr,+iogBu 

-Re[E,(Bu+iy,) +log(Bu+iy,)]}. (D.2) 

The coefficients S,,, and N,,,j are defined by 

(D.3) 

N 
(1 -v$/r:‘)(l -v2’/7!j’) 

In., = 
(1 - V$/Y?‘) 

(D.4a) 

N 
(1 -vp’/rp’)(l- vy’/rg’) 

tn.2 = 
(1 -v$?/v:‘) 

x k,#i=, (1 -vg’/vp’)(l -v:yvpl 

m (1 -v:‘/rp)(l -Q/Q’) (D.4b) 

Making use of the region of regularity for the second and 
third part on the r.h.s. of (D.l) we obtain by an equivalent 
procedure 

D(A)&’ = i $f K(0) f 
aInS&!’ 

,,,=I (u,+16Bu/Bo)(I+ia,)’ 

The remaining two functions D(I)&-’ and D(h)&’ are re- 
covered by simple subtraction 

D(A)&’ = D(,I)(m) - D(A)&‘, 

D(A)&’ = D(A)‘+‘- D(A)b”. 
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For the coefficients &,$ and @,‘I we have the definitions Contrary to J&O’ and ~$2) the above integrals as well as 

J&!:= [~i+cos(YJ)[<;O 

those for %‘# and 9” defined by (28) and (29) respectively 

Q’(i, 4 expi - v!r!‘i} di dvl, 0.5) have to be computed numerically. For the q-integration we 
used Filon’s classical quadrature formula [28] with 50 

@$l’= ’ 
s i 

cWhd + g sWmd 
H 

m intervals. The [-integration was performed by using a Gauss 

e’K3 d quadrature formula of order 10 whereby the upper limit 
1=0 ” 1’0 has been chosen arbitrarily at such a location where Q’({, q) 

exp{ - 41 did? (D.6) was less than lo-“. 

INTERACTION RAYONNEMENT-CONVECTION POUR UN ECOULEMENT LIMITE 
PAR UNE PLAQUE CHAUDE 

RbumC-On Ctudie Tint&action rayonnement-convection pour un tcoulement limite lattralement par 
une plaque chauffee, en s’int~ressant a t’influence du rayonnement bidimensionnel. A cause de la grande 
anisotropie du rayonnement pres du bord d’attaque de la plaque, ~approximation bidimensionnelle aux 
dtrivees partielles tombe en defaut dans cette region. On utihse l’approximation de Oife qui tient compte 
separtment du rayonnement externe de la paroi. Ces equations pour un gaz gris sont linearisees en 
admettant de faibles perturbations de temperature et elles sont resolues par la technique WienerHopf. 
On compare les rtsultats avec des solutions approchtes. En particulier on montre que le modtle 
monodimensionnel de “couche de rayonnement” de Cess est limite au rayonnement faible. On constate 

un comportement differant pour un rayonnement intermtdiaire ou fort. 

WECHSE~WIRKUNG ZWISCHEN STRAHLUNG UND KONVEKTION BEI EINER 
SEITLICH BEGRENZTEN STRGMUNG UM EINE BEHEIZTE PLATTE 

Zusammenfassung-Die Wechselwirkung zwischen Strahlung und Konvektion in einer seitlich begrenzten 
StrGmung urn eine beheizte Platte wird untersucht, wobei der EinfluB zweidimensionaler Strahlung im 
Vordergrund steht. Wegen der starken Anisotropie der Strahlung nahe der Plattenvorderkante versagt 
die gewohnliche, zweidimensionale Differentialapproximation in diesem Gebiet. Es wird deshalb eine 
nach Olfe modifizierte Differentialapproximation verwendet, bei welcher die Wandstrahlung gesondert 
ber~~ksichtigt wird. Die Gleichungen fur ein graues Gas werden unter der Annahme kfeiner Tempera- 
turs~~rungen linearisiert und mittels der Wiener-Hopf-Methode gel&x Die Resultate werden mit 
verschiedenen N~erungsl~sungen vergIichen. Dabei zeigt sich unter anderem, daRder Anwendungsbereich 
des eindimensionalen “Strahlungsschichtmodells” von Cess auf schwache Strahlung beschr6nkt ist. Fiir 

mittlere und starke Strahlung wird ein ausgeprsgter “VorlBufereffekt” beobachtet. 

BJIHXHLIE M3JlYYEHHX H KOHBEKHHH HPH OBTEKAHMM HATPETOH 
HJIACTMHbI DOTOKOM, OrPAH~~EHHbIM BOKOBLIMH CTEHKAMM 

~OTaUH~-~~BeAeHo~~~~Ao~aH~eBA~R~~~~3ny'IeHI111~KOHBeKUIlH~p~o6TeK~~~~tiar~Toif 

~naCT~HbI IIOTOKOM, Ofp~~~eHHbIM60KOBhIMWCTeHKaMW,R~~dMBA~~H~eAByMepHOrOU3~~eHlm 

RBJISeTCII rrpeo6AaAaroursM. Bcnencrswe BbiCOKOi8 aHH3OTpOIIKE U3JIyWHaX B6JIH3tI IIepeAH& 

KPOMKU IInaCTUHbI 06bIYHoe AByMepHOe rrp~6nuxerfne OKa3bIBaeTCfi HeAOCTaTOOYHbIM. nO3TOMY 

UCIlOnb3yeTCR MOAH&iUUpOBaHHOe AEi@,cbepeffUHEiJIbHOe npA6nwmeHne Onb@, B KOTOPOM yWiTbI- 

BaeTCIl H3Q"IeHHe BHeDJHei CTeHKU.YpaBHeHUIIAnfiCepOrO ra3anEiHeapH3yIOTCR B IIpeAIIOJTOx(eHHH 

ManbIXTeMIIepaTypHbIXBO3MyI.UeHH~HpeIUiUOTC5IMeTOAOM Bunepa-Xon+a. Pe3ynbTaTbIHWJIeAO- 

BZlHElR CpaBHHBaEOTCR C HeKOTOPbIMU rIpH6nHxeHHbIMH PeUIeHEIRMH. nOKa32tHO TaKW.2, YTO OPHO- 

MepHaX MOAenb WJf0.S N3nfleHUXN CeCCa O~pN-iii'ikfBaeTCR 06nacTbw ManOZi IiHTeHCRBHOCTH H3ny- 

YeHklSI. Ana u3nyresax cpeAHei si 6onbxuol x+~ HcuBH~CTH Ha6ntoAa TCI~ xplto Bbtpax HHO 


